CANADIAN STROKE BEST PRACTICE RECOMMENDATIONS

Acute Stroke Management
Seventh Edition, Update 2022
Appendix 3: Tables of Tools

Heran M, Shamy M (Writing Group Chairs)
on Behalf of the Canadian Stroke Best Practice Recommendations
Acute Stroke Management Writing Group and in collaboration with the
Canadian Stroke Consortium

© 2022 Heart and Stroke Foundation of Canada
APPENDIX 3: TABLES OF TOOLS

Table 3a: Standardized Acute Prehospital Stroke Screening Tools

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results (validity & reliability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cincinnati Pre-Hospital Stroke Scale (CPSS)</td>
<td>3 items: presence/absence of facial palsy; unilateral arm weakness; and speech impairment. Items simplified versions from the NIHSS. Abnormality demonstrated on one or more items is indicative of suspected stroke</td>
<td>171 patients with suspected stroke recruited through ED and inpatient neurology units. Mean age was 57.8 years, 58% male. Stroke/TIA prevalence: 49 (28.7%)</td>
<td>Final discharge diagnosis of stroke</td>
<td>Validity
Physicians: Sensitivity
1 abnormality 66%, 95% CI 49-80%
2 abnormalities 26%, 95% CI 14-43%
3 abnormalities 11%, 95% CI 3-26%

Physicians: Specificity
1 abnormality 87%, 95% CI 80-92%
2 abnormalities 95%, 95% CI 90-98%
3 abnormalities 99%, 95% CI 95-100%

Prehospital care workers: Sensitivity
1 abnormality 59%, 95% CI 51-67%
2 abnormalities 27%, 95% CI 21-35%
3 abnormalities 13%, 95% CI 8-20%

Prehospital care workers: Specificity
1 abnormality 88%, 95% CI 86-91%
2 abnormalities 96%, 95% CI 94-97%
3 abnormalities 98%, 95% CI 96-99%</td>
</tr>
<tr>
<td>Face Arm Speech Test</td>
<td>3 items derived from the CPSS: facial palsy, arm weakness, speech</td>
<td>487 patients admitted by ambulance, primary</td>
<td>WHO criteria</td>
<td>Validity
Sensitivity: Diagnostic sensitivity of FAST associated</td>
</tr>
<tr>
<td>Assessment Tool</td>
<td>Items/Scoring</td>
<td>Sample</td>
<td>Reference Standard</td>
<td>Results (validity & reliability)</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>(FAST) Harbinson et al. 2003</td>
<td>disturbance. Assessment of speech is not dependent on the repetition of a stock phrase, as per CPSS, but assessed during by EMS during normal conversation with the patient. Abnormality demonstrated on one or more items is indicative of suspected stroke</td>
<td>care physicians and ED referrals with suspected stroke. Mean age was 72 years, 52% were female Stroke/TIA prevalence: 356 (73.1%). FAST was completed by paramedics over a 6-month period</td>
<td>with paramedic use was estimated to be 79%. PPV (arrival by ambulance): 78%, 95% CI 72-84% The validity of this scale has been evaluated further, by independent researchers. Reliability Not assessed in this publication, but has been subsequently evaluated.</td>
<td></td>
</tr>
<tr>
<td>Los Angeles Prehospital Stroke Screen (LAPSS) Kidwell et al. 2000 (Prospective validation study)</td>
<td>6 items: 4 screening/history items (age>45 years, no history of seizures, symptom duration <24 hours, ambulation status at baseline not bedridden or wheelchair bound), blood glucose (between 60 and 400) level, a clinical assessment (of 3 items to identify obvious asymmetry: facial palsy, grip, arm strength). If the patient has positive criteria, a blood glucose level within the specified range and unilateral weakness on the clinical exam items, they are a positive screen for stroke.</td>
<td>206 patients (of 1,298 total runs) with neurological symptoms, who were noncomatose, with nontraumatic cause, who had a LAPSS screen conducted. Mean age was 67 years, 52% were male Stroke/TIA prevalence: 36 (17.5%) LAPSS was completed by 18 paramedics over a 7-month period.</td>
<td>Hospitalized patients with final diagnosis of stroke Validity Sensitivity: 91%, 95% CI 76-98% Specificity: 97%, 95% CI 93-99% PPV: 86%, 95% CI 70-95% NPV: 98%, 95% CI 95-99% Accuracy: 96%, 95% CI 92-98% + LR: 31, 95% CI 16-147 - LR: 0.09, 95% CI 0-0.21 This validity of this scale has been evaluated further, by both the scale developers and independent researchers. Reliability Not assessed</td>
<td></td>
</tr>
<tr>
<td>Ontario Prehospital Stroke Screen (OPSS) Chenkin et al. 2009</td>
<td>At least one of the following symptoms must be present: unilateral leg/arm weakness or drift; slurred speech or muteness; unilateral facial droop), and the patient can be transported to arrive at a stroke centre within 3.5 hours of symptom onset.</td>
<td>325 patients transported to a stroke centre, who had been screened as positive by paramedics using the OPSS. Patients were identified through a National Stroke Registry. Mean age was 73.7 years, 47.4% were male Stroke prevalence: 187</td>
<td>Final discharge diagnosis Validity Since all patients included in the sample, were screened as positive, sensitivity and specificity could not be calculated. PPV for acute stroke (1, 2, or 3 positive signs): 89.5%, 95% CI 85.7-92.7% No additional validation studies have been conducted on this scale. Reliability Not assessed</td>
<td></td>
</tr>
</tbody>
</table>
Assessment Tool

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results (validity & reliability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melbourne Ambulance Stroke Screen (MASS)</td>
<td>Combination of items from CPSS and LAPSS. The presence of any physical assessment item + a response of "yes" to all history items indicates a positive screen</td>
<td>An unknown number of EMS workers conducted OPSS over a one-year period</td>
<td>Final discharge diagnosis</td>
<td>Validity: Sensitivity: 90%, 95% CI 81-96% Specificity: 74%, 95% CI 53-88% PPV: 90%, 95% CI 81-96% NPV: 745, 95% CI 53-88% +LR: 3.49, 95% CI 1.83-6.63 -LR: 0.13, 95% CI 0.06-0.27 Accuracy: 86% (Validity of LAPSS and CPSS was also assessed. CPSS had highest sensitivity at 95%, LAPSS had highest specificity at 85%) This validity of this scale has been evaluated further, by the scale developers.</td>
</tr>
<tr>
<td>Recognition of Stroke in the Emergency Room Scale (ROSIER)</td>
<td>7-items: 2 clinical history items (loss of consciousness, convulsive fits/syncpoe) and 5 neurological signs of stroke (facial palsy/weakness, arm weakness, leg weakness, speech disturbance and visual field defect). A -1 is awarded for each clinical history item present and a +1 for each neurological sign. Total scores range from -2 to +5. A score >0 is associated with possible stroke. Assessments were conducted by ED physicians during a one-year period</td>
<td>160 consecutive patients with suspected stroke presenting to the Emergency Department (ED) Final diagnosis made by stroke consultant after review of symptoms and imaging findings</td>
<td>Final discharge diagnosis</td>
<td>Validity (Prospective validation study) Sensitivity: 93%, 95% CI 89-97% Specificity: 83%, 95% CI 77-89% PPV: 90%, 95% CI 85-98% NPV: 88%, 95% CI 83-93% (Validity of LAPSS, FAST and CPSS was also assessed. CPSS had highest sensitivity at 85%, LAPSS had highest specificity at 85%). The validity of this scale has been evaluated further by independent researchers.</td>
</tr>
<tr>
<td>Medic Prehospital</td>
<td>The scale was developed by combining the strongest elements</td>
<td>416 patients with suspected stroke,</td>
<td>Final discharge diagnosis</td>
<td>Validity: Sensitivity: 74.2%, 95% CI 67.2-80.2%</td>
</tr>
</tbody>
</table>
Assessment Tool

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results (validity & reliability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment for Code Stroke (MedPACS)</td>
<td>of CPSS and LAPSS and included: eligibility criteria-no prior history of seizure; onset of symptoms ≤25 hours, blood glucose 60-400 mg/mL and a physical exam (facial droop, arm/leg weakness; speech difficulty; and gaze preference)</td>
<td>transported to one of 7 hospitals. Mean age was 66.8 years, 45.7% were male. Stroke prevalence: 186 (44.7%)</td>
<td>Studneck et al., 2013</td>
<td>Specificity: 73.26%, 95% CI 26.7-39.1% PPV: 47.1%, 95% CI 41.3-53.0% NPV: 61.0, 95% CI 51.8-69.6% + LR: 1.10, 95% CI 0.973-1.24 - LR: 0.791, 95% CI 0.582-1.07 The validity of the CPSS was also assessed (SN: 79%, SP: 24%)</td>
</tr>
<tr>
<td>Studneck et al., 2013</td>
<td></td>
<td>EMS reports and stroke GWTG-S registries were reviewed over a 6-month period</td>
<td></td>
<td>No additional validation studies have been conducted on this scale.</td>
</tr>
</tbody>
</table>

PPV: Positive Predictive Value; NPV: Negative Predictive Value; LR Likelihood Ratio

References

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Number and description of Items</th>
<th>Time to Administer</th>
<th>Reliability/validity</th>
<th>Interpretation of Scores</th>
<th>Sensitivity and Specificity</th>
<th>Training Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glasgow Coma Scale (GCS)</td>
<td>15 items in 3 categories: motor response (6 items), verbal response (5 items), and eye opening (4 items). Points are awarded for the best response in each category. Categories are summed to provide a total score.</td>
<td>Approximately 1 minute.</td>
<td>Interobserver reliability: Scale authors reported low rates of disagreement, but noted variations in motor responses based on stimulus used. Reported agreements ranged 0.48 (verbal) to 0.72 (eye opening) and from 0.39 – 0.79. Percentage agreements have been reported as 90% overall, and as ranging from 83.8% (eye opening, right) to 98.7% (best motor response – left). In addition, similar rates of between observer agreement have been reported in groups of experienced nurses (98.6% - 100%), newly graduated nurses (94.3%-96.2%) and student nurses (77.3% - 100%).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teasdale & Jennett 1974¹</td>
<td></td>
<td></td>
<td></td>
<td>GCS scores range from 3 – 15, where 3 represents total unresponsiveness and 15 represents alert and fully responsive. Scores may be divided into categories by severity: 13-15 = mild; 9-12 = moderate and ≤8 represents severe injury.</td>
<td>Not reported</td>
<td>Yes.</td>
</tr>
</tbody>
</table>
Assessment Tool

<table>
<thead>
<tr>
<th>Number and description of Items</th>
<th>Time to Administer</th>
<th>Reliability/validity</th>
<th>Interpretation of Scores</th>
<th>Sensitivity and Specificity</th>
<th>Training Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Predictive Validity:
GCS score is a significant predictor of death following stroke, or traumatic brain injury (modified by age and mechanism of injury), though eye-opening may be less strongly associated than either the motor or verbal score components. GCS scores are also predictive of survival (AUC=0.89), though eye-opening may not add to predictive accuracy. GCS scores have been demonstrated to be predictive of Glasgow Outcome scores at 6 months to 1 year post injury, Disability Rating Scale scores at discharge and at 6 months, FIM scores at discharge and employment status at one year.

References

Table 3c Prehospital Stroke Screening Scales to Identify Large Vessel Occlusions (LVO)

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wasyliw et al. 2022
Face, Arm, Speech, Time-Vision Aphasia Neglect (FAST VAN)**</td>
<td>3 components
1. Vision: Is there a gaze preference to either side (usually away from the hemiparesis)?
2. Aphasia: Ask the patient to name simple objects (ie: watch, pen).
3. Neglect: With eyes closed, touch each arm independently and ask which side is being touched. Then touch both simultaneously. If neglect is present the patient will only report one side being touched, almost always neglecting the left side.
Any single positive response was considered to be positive for LVO.</td>
<td>1,080 consecutive acute stroke patients attended to by EMS personnel between April 2017 and Jan 2021.</td>
<td>CTA</td>
<td>Of 440 patients who were FAST-VAN +ve, 236 (53.6%) had LVO. Of 640 patients who were FAST-VAN -ve, 40 (6.25%) had LVO. Sensitivity was 86%; specificity was 75%. Overall accuracy was 77%. Among the 240 false positives (+ve FAST VAN, no LVO), 69 patients were stroke with no LVO, 47 were ICH, 30 had delirium/encephalopathy, 23 had seizures, 14 had TIA, and 21 had other conditions</td>
</tr>
<tr>
<td>Okuno et al. 2020
Field Assessment of Critical Stroke by Emergency Services for Acute Delivery (FACE2AD)**</td>
<td>6 items
1. Facial palsy (0-1)
2. Arm palsy (0-1)
3. Consciousness impairment (0-1)
4. Eye deviation (0 or 2)
5. Atrial fibrillation (0-1)
6. Diastolic blood pressure ≤ 85 mmHg (0-1)
Total possible score: 7</td>
<td>1157 patients were included in the derivation cohort. They were patients taken to hospital by EMS because of suspected stroke or consciousness disturbance in the first 24 hours of symptom onset, from 2012 and 2015.</td>
<td>MRA, CTA, digital subtraction angiography (DSA)</td>
<td>In the derivation cohort, 416 patients had ischemic stroke of which 149 (13%) patients had LVO. In the validation cohort, at a cut point of ≥3, the sensitivity and specific were 0.85 and 0.80, respectively. PPV and NPV were 0.39 and 0.97, respectively. AUC was 0.88 (95% CI 0.87–0.90). In the validation cohort, 216 patients (43%) had an ischemic stroke, of which 86 (17%) patients had an LVO. In the validation cohort, at a cut point of ≥3, the sensitivity and specific were 0.80 and 0.74, respectively. PPV and NPV were 0.39 and 0.95, respectively. AUC was 0.83 (95% CI 0.81–0.86).</td>
</tr>
<tr>
<td>Assessment Tool Author</td>
<td>Items/Scoring</td>
<td>Sample</td>
<td>Reference Standard</td>
<td>Results</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Gong et al. 2020</td>
<td>5 items based on NIHSS</td>
<td>1,355 patients, admitted to a single centre from 2009 to 2018 with confirmed acute ischemic stroke with symptom onset within the previous 8 hours. Median NIHSS on admission was 8 (IQR 3–15). NIHSS data was abstracted from patient records by an experienced neurologist</td>
<td>CTA or MRA</td>
<td>664 patients (49.0%) were found to have LVO. At a cut-point of ≥4: Sensitivity: 61.7% Specificity: 81.0% Positive predictive value: 78.5% Negative predictive value: 69.2% AUC was 0.758 Youden Index: 0.428</td>
</tr>
<tr>
<td>Vidale et al. 2019</td>
<td>5 items, based on LAMS</td>
<td>145 patients with suspected ischemic stroke presenting to an emergency department of one hospital between April and October 2017. The scale was developed and tested on the same cohort of patients. Both a neurologist and a nurse performed all assessments.</td>
<td>CT/CTA</td>
<td>54 patients (37.2%) were found to have LVO. At a cut point of >3 on The LARIO scale: Sensitivity: 100% Specificity: 83% + LR: 0.77 - LR: 1.0 AUC: 0.951 (95% CI 0.902-0.980) Compared with other scales, NIHSS had the best performance (AUC 0.915). AUC for CPSS (0.896), LAMS (0.832) and VAN (0.884). There was excellent agreement between raters (Cohen’s k: 0.963).</td>
</tr>
<tr>
<td>Gropen et al. 2018</td>
<td>5 items, based on NIHSS</td>
<td>1,663 consecutive adult stroke patients enrolled in the Tulane Comprehensive Stroke Center (CSC) registry from 2008 to 2013.</td>
<td>CTA or MRA</td>
<td>LVO was present in 171 patients (10.3%). At a cut-point of ≥3 on EMSA had the best performance to identify LVO Sensitivity: 74.5% (95% CI 68.7-80.5)</td>
</tr>
</tbody>
</table>
Assessment Tool

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Author</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results</th>
</tr>
</thead>
</table>
| **Assessment (EMSA)** | | 5. Slurred speech or aphasia (0-2) | Acute stroke cohort: Used to develop the EMSA. 218 stroke patients in 2010, based on chart review. | | Specificity: 50.3% (95% CI 44.4-56.2)
+ LR: 1.517 (95% CI 1.356-1.659)
- LR: .489 (95% CI .366-0.637) |
| | | Total possible score: 6 | | Performance of EMSA was also compared with 3I-SS, C-STAT, RACE, FAST-ED, and NIHSS (3 different cut points). An EMSA ≥ 3 had a significantly higher sensitivity for prediction of LVO compared with the other scales at their published cut-points but had lower specificity.
The area under the curves for the scales were similar across scales
EMSA 0.688 (95% CI .736-0.640)
3I-SS 0.647 (95% CI 0.696-0.597)
C-STAT 0.646 (95% CI0.693-0.598)
RACE 0.666 (95% CI 0.716-0.616)
FAST-ED 0.641 (95% CI 0.690-0.591)
NIHSS 0.678 (95% CI 0.723-0.633)
A cut point of ≥1 on a variety of scales resulted in sensitivities and specificities (95% CI) of:
EMSA 93.3% (86.9-96.7), 46.9% (38.0-56.1)
3I-SS 74.3% (65.2-81.7) 54.0% (44.8-62.9)
C-STAT 36.2% (27.6-45.7), 74.3% (65.6-81.5)
RACE 84.8% (76.7-90.4), 55.8% (46.6-64.6)
FAST-ED 78.1% (69.3-84.9), 54.9% (45.7-63.7) |
| **Field Assessment Stroke Triage for Emergency Destination (FAST-ED)** | Lima et al. 2016 | 6-items, 5 based on NIHSS
1. Facial palsy (0-1)
2. Arm weakness (0-2)
3. Speech changes (0-2)
4. Eye deviation (0-2)
5. Denial/neglect (0-2)
6. Time (documentation for decision-making) not scored | 741 consecutive patients enrolled in the STOP Stroke study, who were admitted to 2 university-based hospitals with unilateral, complete occlusion of the M1 and M2 segments of the MCA or basilar artery, with onset of symptoms within 24 hours.
Prevalence of LVO: 240 | | A cut-point of ≥4 on FAST-ED had best performance
Sensitivity: 0.61
Specificity: 0.83
PPV: 0.72
NPV: 0.82
Accuracy: 0.79
AUC:0.813
Performance of FAST-ED was also compared with NIHSS, RACE and CPSS scale |

Total possible score: 9 | | | | |
<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results</th>
</tr>
</thead>
</table>
| **Vision, Aphasia, and Neglect (VAN)** | Patients are asked to raise both arms up and hold them up for 10 s. If the patient demonstrates any level of drift, weakness or paralysis, the assessment continues. Otherwise, patient is VAN -ve and screen ends. | 62 acute stroke codes at a single facility | CTA | Performance of VAN was also compared with NIHSS ≥6
For VAN +ve patients
Sensitivity: 1.00
Specificity: 0.90
PPV: 0.74
NPV: 1.00
Accuracy: 0.92
NIHSS≥6
Sensitivity: 1.00
Specificity: 0.79
PPV: 0.58
NPV: 1.00
Accuracy: 0.84 |
| **Prehospital Acute Stroke Severity Scale (PASS)** | 3 NIHSS items:
1. Incorrect month and/or age? (Level of consciousness (NIHSS item >0) 1 point
2. Gaze palsy and/or deviation (NIHSS item gaze>0) 1 point
3. Arm weakness (NIHSS item arm weakness >0) 1 point
Total possible score: 3 | 3,127 patients included in the Danish Stroke Registry (2010-2015) who were treated with t-PA. 2/3 of sample was used for scale development and 1/3 for validation | CTA/MRA | A cut-point of ≥2 on the PASS had the best predictive value:
Using the Derivation cohort
Sensitivity 0.66, 95% CI 0.62-0.66
Specificity: 0.83, 95% CI 0.81-0.85
AUC: 0.74, 95% CI 0.72-0.76
OR=9.22, 95% CI 7.5-11.40
PPV/NPV: 0.68/0.81
+LR/-LR: 3.84/0.42
The values were similar when using the validation cohort |
| **Cincinnati Prehospital Stroke** | 3 NIHSS items:
Derivation cohort-624 patients with mild to severe stroke from 2 | CTA | **Severe stroke**
AUC: 0.89
A cut point of ≥2 had the best predictive value for |
<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Author</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results</th>
</tr>
</thead>
</table>
| Severity Scale (CPSSS) | Katz et al. 2015 | 1. Conjugate gaze deviation (≥1 on NIHSS item for gaze) 2 points
2. Incorrectly answers to at least 1 of 2 LOC questions (NIHSS age or current month) and does not follow at least 1 of 2 commands (close eyes, open and close hand) ≥1 NIHSS items LOC 1b and 1c. 1 point
3. Cannot hold arm (left, right or both) up for 10 seconds (≥2 NIHSS motor arm). 1 point | NIHDS t-PA trials, Validation cohort-650 patients from the IMS-III trial | Prevalence of LVO: 34% (validation cohort) | Severe stroke
Using the derivation cohort
Sensitivity: 89%
Specificity: 73%
+ LR/-LR: 3.30/0.15
Using the validation cohort:
Sensitivity: 92%
Specificity: 51%
+ LR/-LR: 1.89/0.1 |
| Rapid Arterial Occlusion Evaluation Scale (RACE) | Pérez de la Ossa et al. 2014 | 5 NIHSS items:
1. Facial palsy (absent=0, mild=1, mod/severe=2)
2. Arm motor function (normal/mild=0, moderate=1, severe=2)
3. Leg motor function (normal/mild=0, moderate=1, severe=2)
4. Head and gaze deviation (absent=0, present=1)
5. Aphasia (R hemiparesis: performs both tasks correctly=0, performs 1 task correctly=1, performs neither tasks=2); Agnosia (Left hemiparesis: patient recognizes arm/impairment=0, does not recognize arm or impairment=1, does not recognize arm and impairment=2) | Derivation cohort-654 patients with acute stroke or stroke mimic for whom a stroke code had been activated by EMS or a community hospital. Validation cohort-357 patients transferred by EMS to a stroke centre | Prevalence of LVO: 178 patients (27%) had a LVO in derivation cohort vs. 76 (21.3%) in the validation cohort. | In the derivation cohort, there was a strong correlation between RACE and NIHSS (r=0.76, p<0.01)
In the validation cohort, a cut point of ≥5 had the best predictive value for detecting LVO
Sensitivity: 85%
Specificity: 68%
PPV: 42%
NPV: 94%
The AUC for the RACE scale was 0.82, 95% CI 0.77-0.87 for the detection of LVO |
| The Los | 3 items: | 119 patients included in | Transcranial Doppler, CT or MRA | AUC: 0.854 |

Note: The heart and / Icon on its own and the heart and / Icon followed by another icon or words are trademarks of the Heart and Stroke Foundation of Canada.
Assessment Tool

<table>
<thead>
<tr>
<th>Assessment Tool Author</th>
<th>Items/Scoring</th>
<th>Sample</th>
<th>Reference Standard</th>
<th>Results</th>
</tr>
</thead>
</table>
| Angeles Motor Scale (LAMS) Nazliel et al. 2008 | 1. Facial droop (absent=0, present=1)
2. Arm drift (absent=0, drifts down=1, falls rapidly=2)
3. Grip strength (normal=0, weak=1, no grip=2)
Total possible score 5 | a clinical trials registry at a stroke centre from 1996-2003, and patients included in the Get with the Guidelines Registry in 2005. Patients were included if they were last known well within 12 hours of presentation to the ED and had a final diagnosis of ischemic stroke in the anterior circulation
Prevalence of LVO: 74 (62%)
| catheter angiography | A cut point of ≥4 had the best predictive value for detecting LVO
Sensitivity: 81%
Specificity: 89%
Accuracy: 85%
+LR: 7.36
-LR: 0.21 |
| 3-Item Stroke Scale (3ISS) Singer et al. 2005 | 3 items:
Disturbance of consciousness (no=0, mild =1, severe= 2) Gaze and head deviation (absent= 0, incomplete gaze/head deviation=1, forced gaze/head deviation= 2) Hemiparesis (absent=0, moderate=1, severe= 2)
Total possible score 6 | 180 patients presenting to a stroke unit in 2002 with symptoms of stroke within ≤6 hours (28 patients had ICH).
Prevalence of LVO: 27 (15%)
| MRI/MRA/CT | A cut point of ≥4 had the best predictive value for detecting MCA occlusions
Sensitivity: 67%
Specificity: 92%
PPV: 74%
NPV: 89%
Accuracy: 86%
Inter-rater reliability: Intraclass correlation co-efficient was 0.947; Κ for individual items were 0.77, 0.77 and 0.84 |

PPV: Positive Predictive Value; NPV: Negative Predictive Value; LR Likelihood Ratio; AUC Area under curve

References

Table 4 Canadian Stroke Best Practices Screening and Assessment Tools for Acute Stroke Severity

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Purpose</th>
<th>Items and Administration</th>
<th>Interpretation of Scores</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurological status/stroke severity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **Canadian Neurological Scale (CNS)** | Evaluate and monitor the neurological status (cognitive and motor function) of patients who are conscious (alert or drowsy) in the acute phase of stroke | Items assess mentation (level of consciousness, orientation, and speech) and motor function (face, arm, and leg). Motor function evaluations are separated into sections A1 and A2.
 A1 is administered if the patient is able to understand and follow instructions (5 items). A2 is administered if there are comprehension deficits (3 items).
 Takes approximately 5-10 minutes to administer. | Motor items are rated in terms of severity. Ratings are weighted and summed to provide a total score out of 11.5. Lower scores indicate increased stroke severity. | Free download at several sites (e.g., https://strokengine.ca/wp-content/uploads/2020/07/canadian-neurological-scale_strokecenter.pdf) |
| **National Institutes of Health Stroke Scale (NIHSS)** | Evaluate neurologic outcome and degree of recovery for stroke patients. | 15 items: Impairment in level of consciousness (LOC), ability to respond to questions/obey simple commands, papillary response, gaze deviation, hemianopsia, facial palsy, resistance to gravity (weaker limb), plantar reflexes, limb ataxia, sensory loss, visual neglect, dysarthria, and aphasia. Each item is graded on an ordinal scale from 0-3 or 0-4 where 0=no impairment.
 Takes approximately 6 minutes to administer. | Total scale score = 0-42. Higher scores reflect greater severity.
 Stroke severity may be stratified as follows: >25 = very severe, 15–24 = severe, 5–14 = mild to moderately severe and 1–5 = mild | Free download at: https://www.stroke.nih.gov/documents/NIH_Stroke_Scale_508C.pdf |
| **Glasgow Coma Scale (GCS)** | Describe the depth and duration of impaired consciousness or coma. Typically used following traumatic brain injury | 15 items in 3 categories: motor response (6 items), verbal response (5 items), and eye opening (4 items). Points are awarded for the best response in each category. Categories are summed to provide a total score.
 Takes approximately 1 minute to administer. | GCS scores range from 3–15, where 3 represents total unresponsiveness and 15 represents alert and fully responsive.
| **Glasgow Outcome Scale (GOS)** | A global outcome scale which categorizes the outcomes of patients after traumatic brain | 5 categories:
Assessment Tool

<table>
<thead>
<tr>
<th>Assessment Tool</th>
<th>Purpose</th>
<th>Items and Administration</th>
<th>Interpretation of Scores</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Rankin Scale (mRS)</td>
<td>The mRS is an assessment tool for rating global outcome following stroke.</td>
<td>Individuals are assigned a subjective grade or rank ranging from 0 (no symptoms) to 5 (severe disability) based on level of independence with reference to pre-stroke activities rather than observation of task-based performance. Takes approximately 15 minutes to administer. mRS scores range from 0–5 such that 0 is indicative of no symptoms, while a rank of 5 is indicative of the most severe disability (described as bedridden, incontinent, requiring constant nursing care).</td>
<td>Free download at: http://www.strokecenter.org/wp-content/uploads/2011/08/modified_rankin.pdf</td>
<td></td>
</tr>
<tr>
<td>AlphaFIM® Instrument</td>
<td>An assessment tool designed to assess caregiver burden during acute care.</td>
<td>6 items assessing motor (eating, grooming, bowel management, and toilet transfers) and cognitive (expression and memory) function, which can be reliably collected in acute care. For patients who are able to walk 150 feet or more, eating and grooming items are replaced by items evaluating walking and bed transfer. Alpha-FIM® scores are transformed to a projected FIM® scores and an estimate of patient burden of care hours using an online proprietary algorithm</td>
<td>Available for purchase at: www.udsmr.org/WebModules/Alpha/Alp_About.asp</td>
<td></td>
</tr>
<tr>
<td>Assessment Tool</td>
<td>Purpose</td>
<td>Items and Administration</td>
<td>Interpretation of Scores</td>
<td>Availability</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Barthel Index of Activities of Daily Living (BI)</td>
<td></td>
<td>Takes approximately 5 minutes to complete.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahoney & Barthel 1965</td>
<td>Designed to assess severity following intracranial hemorrhage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hunt & Hess Classification of Subarachnoid Hemorrhage (SAH)</td>
<td>Designed to gauge surgical risk and aid neurosurgeons in deciding on the appropriate time after SAH at which the neurosurgeon should operate.</td>
<td>The grades are based on the opinion of its authors, who judged that the most important clinical signs of SAH were: (a) the intensity of meningeal inflammatory reaction, (b) the severity of neurological deficit, (c) the level of arousal, and (d) the presence of associated disease. Individuals are assigned a subjective grade of I to V.</td>
<td>I – asymptomatic or mild headache II – moderate-severe headache, meningism and no weakness III – mild alteration in mental status IV – depressed LOC and/or hemiparesis V – posturing or comatose</td>
<td>Free download at: http://www.strokecenter.org/wp-content/uploads/2011/08/hunt_hess.pdf</td>
</tr>
<tr>
<td>World Federation of Neurological Surgeons Grading Scale</td>
<td>Designed to assess the severity of SAH and to predict outcome.</td>
<td>The scale combines the results of the GCS plus the presence or absence of motor deficits. GCS 15 + absence of motor deficits = Grade I GCS13-14 + absence of motor deficits = Grade 2 GCS13-14 + motor deficits present = Grade 3 GCS 7-12 + motor deficits present/absent = Grade 4 GCS 3-6 + motor deficits present/absent = Grade 5</td>
<td>Maximum score of 15 has the best prognosis Minimum score of 3 has the worst prognosis Scores of 8 or above have a good chance for recovery Scores of 3 to 5 are potentially fatal, especially if accompanied by fixed pupils or absent oculovestibular responses</td>
<td>Free download at: http://www.strokecenter.org/wp-content/uploads/2011/08/WWF_scale.pdf</td>
</tr>
<tr>
<td>Fisher Grading Scale for Subarachnoid Hemorrhage (SAH)</td>
<td>Used to predict cerebral vasospasm after SAH.</td>
<td>Grade 1 - No subarachnoid blood seen on CT scan Grade 2: Diffuse or vertical layers of SAH <1 mm thick Grade 3: Diffuse clot and/or vertical layer > 1 mm thick</td>
<td>Risk of vasospasm Grade 1: Low (0-21%) Grade 2: Low (0-25%) Grade 3: Low to high (23% to 96%) Grade 4: Low to moderate (range 0-35%)</td>
<td>Free download at: http://www.strokecenter.org/wp-content/uploads/2011/08/WWF_scale.pdf</td>
</tr>
<tr>
<td>Assessment Tool</td>
<td>Purpose</td>
<td>Items and Administration</td>
<td>Interpretation of Scores</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Intracerebral Hemorrhage (ICH) Score Hemphill et al. 2001</td>
<td>Used to grade ICH severity and subsequent 30-day mortality, based on age and CT findings.</td>
<td>Components for ICH score include:</td>
<td>ICH scores with corresponding mortality risk are as follows:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GCS score</td>
<td>0 points: 0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-4: 2 points</td>
<td>1 point: 13%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-12: 1 point</td>
<td>2 points: 26%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>13-15: 0 points</td>
<td>3 points: 72%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICH volume</td>
<td>4 points: 97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>≥30 cm³: 1 point</td>
<td>5 points: 100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 30 cm³: 0 points</td>
<td>6 points: 100% (estimated)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IVH (intraventricular hemorrhage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes: 1 point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No: 0 points</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Infratentorial origin of ICH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes: 1 point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>No: 0 points</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Age ≥80 years: 1 point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>< 80 years: 0 points</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References

Useful Links

1. Additional information regarding the CNS, NIHSS, mRS, and FIM is available at www.ebrsr.com and at www.strokengine.ca

2. There is a site for international users of the NIHSS scale – it may be found here: http://www.nihstrokescale.org/ It provides links to the scale in English, as well as lots of good training information – but it also provides links to the scale in quite a number of other languages as well.

3. An online calculator for many of the scales listed above: https://www.mdcalc.com/

4. The Rankin scale has its own website: http://www.rankinscale.org/

Table 5 Canadian Stroke Best Practices: Selection of Validated Swallowing Screening Tools

<table>
<thead>
<tr>
<th>Author/Name of test</th>
<th>Components of test</th>
<th>Details of validation study</th>
<th>Results of original validation study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daniels et al. 1997“Any Two”</td>
<td>Items included 6 clinical features. Dysphonia, dysarthria, abnormal volitional cough (includes water-swallowing test), abnormal gag reflex, cough after swallow, and voice change after swallow were assessed.</td>
<td>Scoring: Presence of any 2 of the items distinguished patients with/without dysphagia. Sample: 59 acute stroke survivors were studied within 5 days of hospital admission.</td>
<td>Diagnostic standard: VMBS exam. Prevalence of dysphagia: 74.6% The sensitivities and specificities of individual items ranged from 31%-76.9% and 61%-88%, respectively. Overall: Sensitivity: 92% Specificity: 67%</td>
</tr>
<tr>
<td>Trapl et al. 2007The Gugging Swallowing Screen (GUSS)</td>
<td>Preliminary Assessment (vigilance, throat clearing, saliva swallow) Direct swallow (semisolid, liquid, solid swallow trials) Scoring: Total scores ranged from 0 (worst) - 20 (no dysphagia). A cut-off score of 14 was selected. Sample: 50 first-ever acute stroke patients with suspected dysphagia.</td>
<td>Diagnostic standard: Fiberoptic endoscopic evaluation using the Penetration Aspiration Scale to interpret the results. Prevalence of dysphagia: 73% First group of 19 patients using the GUSS to identify subjects at risk of aspiration: Sensitivity: 100% Specificity: 50% Second group of 30 patients Sensitivity: 100% Specificity: 69% Interrater reliability: Kappa=0.835</td>
<td></td>
</tr>
<tr>
<td>Martino et al. 2009The Toronto Bedside Swallowing Screening Test (TOR-BSST)</td>
<td>Items included presence of dysphonia before/after water swallowing test, impaired pharyngeal sensation, and abnormal tongue movement. Scoring: pass=4/4 items; fail ≥1/4 items Sample: 311 stroke patients (103 acute, 208 rehabilitation)</td>
<td>Diagnostic standard: VMBS exam. Prevalence of dysphagia: 39% Sensitivity: 91% Specificity: 67% Interrater reliability (based on observations from 50 subjects) ICC =0.92 (95% CI: 0.85-0.96)</td>
<td></td>
</tr>
<tr>
<td>Edmiaston et al. 2009 Acute Stroke Dysphagia Screen USA</td>
<td>Items included Glasgow Coma Scale score <13, presence of facial, tongue or palatal asymmetry/weakness. If no to all 3 items, then proceed to 3 oz water swallowing test. Scoring: If there is evidence of change in voice quality, cough, or</td>
<td>Diagnostic standard: Mann Assessment of Swallowing Ability (MASA), performed by a SPL. Prevalence of dysphagia: 29% Sensitivity (Dysphagia): 91% Specificity: 74%</td>
<td></td>
</tr>
<tr>
<td>Author/Name of test</td>
<td>Components of test</td>
<td>Details of validation study</td>
<td>Results of original validation study</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Turner-Lawrence et al. 2009</td>
<td>Change in vocal quality 1 minute after water swallowing test = fail.</td>
<td>Sample: 300 acute stroke patients screened by nurses within 8 to 32 hours following admission.</td>
<td>Sensitivity (Aspiration risk): 95% Specificity: 68% Interrater reliability: Kappa=94%</td>
</tr>
<tr>
<td>Emergency Physician Dysphagia Screen</td>
<td>The two-tiered bedside tool was developed by SLPs. Tier 1 items included voice quality, swallowing complaints, facial asymmetry, and aphasia. Tier 2 items included a water swallow test, with evaluation for swallowing difficulty, voice quality compromise, and pulse oximetry desaturation (≥ 2%). Patients failing tier 1 did not move forward to tier 2. Scoring: Patients who passed both tiers were considered to be low-risk.</td>
<td>Sample: A convenience sample of 84 stroke patients (ischemic/hemorrhagic) screened by 45 ER MDs.</td>
<td>Diagnostic standard: formal assessment conducted by an SLP Prevalence of dysphagia: 57% Sensitivity: 96% Specificity: 56% Interrater reliability: Kappa=0.90</td>
</tr>
<tr>
<td>Antonios et al. 2010</td>
<td>12 of the 24 MASA items were retained including alertness, cooperation, respiration, expressive dysphasia, auditory comprehension, dysarthria, saliva, tongue movement, tongue strength, gag, volitional cough, and palate movement.</td>
<td>Sample: 150 consecutive patients with acute ischemic stroke were assessed by 2 neurologists shortly after admission to hospital.</td>
<td>Diagnostic standard: MASA conducted by SLP Prevalence of dysphagia: 36.2% Sensitivity: 87% & 93% Specificity: 86% & 84% Interrater reliability: Kappa=0.76</td>
</tr>
<tr>
<td>Schrock et al. 2011</td>
<td>5 Items included alert and able to sit upright for 10 minutes; weak, wet, or abnormal voice; drooling; slurred speech; and weak or inaudible cough. Scoring: ≥1 items answered yes=failed screen.</td>
<td>Sample: 283 patients admitted to the Emergency department with acute stroke and screened for the presence of dysphagia by nurses</td>
<td>Diagnostic standard: VMBS Prevalence of dysphagia at 30 days: 32% Sensitivity: 95% Specificity: 55% Interrater reliability: Kappa=0.69</td>
</tr>
</tbody>
</table>

References

